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Dilute resonating gases and the third virial coefficient

Paulo F. Bedaque* and Gautam Rupak†

Lawrence Berkeley National Laboratory, Berkeley, California 94720
~Received 3 September 2002; published 19 May 2003!

We study dilute gases with short-range interactions and large two-body scattering lengths. At temperatures
between the condensation temperature and the scale set by the range of the potential there is a high degree of
universality. The first two terms in the expansion of thermodynamic functions in powers of the fugacityz,
which measures the diluteness of the system, are determined by the scattering length only. The term propor-
tional toz3 depends only on one new parameter describing the three-body physics. We compute the third term
of the expansion and show that, for many values of this new parameter, thez3 term may be the dominant one.
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I. INTRODUCTION

Only on special circumstances the thermodynamic fu
tions of a system can be evaluated starting from the mic
scopic interactions. However, in many situations only a f
characteristics of the microscopic interactions are relev
All systems sharing these same microscopic characteri
have then the same macroscopic behavior, that is, there
certain degree of universality. An example of such a sys
is a gas of particles with short-range interactions. As long
the density and temperature are such that the typical w
lengthl of the particles is much larger than the rangeR of
the forces, the details of the interaction potential is larg
irrelevant and the thermodynamics is determined by the t
body scattering lengtha, up to corrections of orderl/R. This
observation has been used both for fermionic and bos
gases since the 1950s1–9 in the computation of dilute ga
properties in an expansion in powers ofna3, wheren is the
density of particles.

Typically, the size of the two-body scattering length
comparable to the range of the force,a'R. However, there
are important situations where the interactions are fine tu
in such a way as to makea@R, even though other low-
energy parameters such as the effective ranger 0, etc., still
have the size expected on dimensional groundsr 0'R. We
have in mind two of these situations. The first one, a gas
neutral atoms, has received enormous experimental and
oretical attention recently. The range of the interactions
tween the atoms is set by the length scaleR;(MC6 /\2)1/4

of the van der Wals force2C6 /r 6. In some atomic specie
such as87Rb and4He the fine tuning needed for large valu
of a is provided by the Nature. In the case of4He atoms for
instance,a5104 Å, a value much larger thanR;5 Å or the
effective ranger 0'7 Å. More importantly, an external mag
netic field can be applied in order to artificially modify th
scattering length, making it atunableparameter~Feshbach
resonance! . The second example of unnaturally large sc
tering lengths is a gas of neutrons~and protons, if the Cou-
lomb force can be disregarded!. The range of the nuclea
forces is of the order of the Compton wavelength of the p
(R;\/mp;1.5 fm), but the scattering lengths are signi
cantly larger~5.42 fm for the proton-neutron in the spin
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triplet state to218.8 fm for neutron-neutron in the spin
singlet state!.

The typical momentum of the particles in a gas is set
the larger of the inverse interparticle distancen1/3 and the
inverse thermal wavelengthl̄5(MT/2p)21/2 ~from now on,
we will use\51). In the natural case,a'R, the universal
regime occurs for 1/l̄,n1/3&1/a'1/R. This regime is essen
tially perturbative in the sense that, at any given order of
expansion in powers of 1/R, a properly set up diagrammati
expansion involves only a finite number of diagrams.10 On
the other hand, when 1/l̄, n1/3'1/R the details of the par-
ticle interactions are important and each system should
studied in a case by case basis. The presence of large
tering lengths opens up an intermediate regime, where
typical wavelengthl of the particles is comparable toa, but
still larger thanR. The problem is no longer perturbative, a
evidenced by the fact that bound states of size'a are ex-
pected, but some degree of universality should still ho
This regime can be attained at very low temperatures
moderately high densitiesna3;1*nR3 or at moderately
high temperaturesa/l̄;1*R/l̄ and very low densities. It is
an outstanding problem to understand the first of these
gimes, since, most likely, many-body correlations are
suppressed, and a number of publications have appeare
cently on the subject.11–16 In this paper, we will consider the
second case, namely, a dilute (na3&1), moderately hot
@(MT/2p)1/2a'1# gas of resonatinga*R particles.

Since we are considering low densities, it is convenien
phrase our discussion in terms of the virial expansion, wh
the different thermodynamic functions are expressed
power series on the fugacityz5ebm, whereT51/b is the
temperature andm the chemical potential. The particle den
sity n and the pressureP are given by

n5
1

l̄3
~b1z12b2z213b3z31••• !,

P5
T

l̄3
~b1z1b2z21b3z31••• !. ~1!

The usefulness of the virial expansion resides on the
that, for small densities,n&l̄23, z is also smallz!1. The
©2003 The American Physical Society13-1
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coefficientsbl contains contributions coming fromm-particle
correlations for allm< l , so its computation involves th
solution of thel-body problem. The calculations ofb1 andb2
are rather easy and can be done analytically in the sys
considered here. The computation ofb3 is a little more in-
volved: it includes some numerical integrations, and it
related to the quite unusual properties of the three resona
particle system.

There is a general formula relatingb3 to S-matrix
elements.17 However, the matrix elements relevant here a
the ones describing a variety of processes such as thre
three-particle scattering, dimer breakup in a collision to
particle, etc. It seems to us that the equivalent method
lowed below implicitly includes all these processes in
simple way. Also, since it is an straightforward application
standard effective-field theory and many-body physics me
ods, it may have some methodological interest.

We will use the language of effective-field theory, whic
is natural when exploring universal, low energy, larg
distance properties that are independent of the short-dist
details. We will work at the leading order in the small m
mentum expansion, where the Lagrangian of the system

L5c†S i ]01
¹W 2

2M
Dc2

C0

4
~c†c!22

D0

36
~c†c!31•••,

~2!

wherec (c†) is the field that annihilates~creates! a particle,
C0 and D0 are constants that will be determined later, a
the dots stand for terms with either more derivatives orc
fields, whose contributions are suppressed at the order w
considering here. We will discuss the bosonic case first
comment on the few, but important, differences presen
the fermionic case later. It is convenient to introduce
dummy fieldd with the quantum numbers of two particles~a
dimer! and use the equivalent Lagrangian

L5c†S i ]01
¹W 2

2M
Dc1Dd†d2

g

A2
~d†c21H.c.!

2g3d†dc†c1•••, ~3!

where 2g2/D5C0 and 36g3g2/D25D0. The equivalence
between the two Lagrangian can be seen by performing
Gaussian integration over the auxiliary fieldd and recovering
Eq. ~2!, see Ref. 18. The value of the constantD is arbitrary
and affects only the normalization of the dimer field. Phy
cal quantities depend on it only through the combinationsC0
andD0.

We now compute the particle densityn in a expansion in
powers ofz and, by comparing with Eq.~1!, determine the
coefficientsbl . The computation of the two first virial coef
ficients is rather trivial, and there are fairly explicit gene
formulas for them. We will quickly discuss them here
order to explain the method used in selecting which diagra
contribute at each order.
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In selecting the diagrams contributing to given order inz
one should notice that diagrams with a closed particle l
vanish in the vacuum (z50). Consequently, at low densitie
their contribution is suppressed by one power ofz for each
closed particle loop. With that observation in mind, we s
that the only diagram contributing to the particle density
leading order inz is the loop diagram shown in Fig. 1:

n15T(
k0

E d3k

~2p!3

21

2 ik01ek

'
z

l̄3
1

z2

2
3
2l̄3

1
z3

3
3
2l̄3

1O~z4!. ~4!

The sum over the frequenciesk0 is over all integer multiples
of 2pT and ek5kW2/2M2m. Equation ~4! determinesb1
51, which is the free gas result. It also gives some con
butions tob2 andb3.

TheO(z2) contributions can be divided into the one-bod
contributionn2

(1) coming from the second term in Eq.~4! and
the two-body contributionsn2

(2) . From Eqs.~4! and ~1!, we
find b2

(1)5225/2. The diagrams contributing ton2
(2) are

shown in Fig. 2. The need for the resummation in the fu
dimer propagator indicated at the bottom of Fig. 2 is mo

FIG. 2. Diagram determining the density at leading order inz2

~top! and the dressing of the dimer propagator.

FIG. 1. Graph determining the density at leading order inz. The
cross represents an insertion of the particle number operator.
3-2
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easily explained after computing it. The dimer propagato
given by a geometrical sum

D~p!52
1

D
1

1

D
S~p!

1

D
1•••52

1

D1S~p!
, ~5!

where

S~p!5S (0)~p!1S (1)~p!1O~z2!

5
Mg2

4p
S 2L

p
2ApW 2

4
22Mm2 iMp0D 2

zMg2

2p2p

3E
0

`

dk2e2bk2/2MarctghS p k

k21
p2

2
22Mm2 iMp0

D
1O~z2!. ~6!

In particular, the leading order dimer propagator is t
same as in the vacuum
o

y
it

r

e
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D (0)~p!5
4p

Mg2

1

2
4p

Mg2
2

2

p
L1ApW 2

4
22Mm2 iMp0

,

~7!

whereL is the cutoff scale for the momentum integral. Th
cutoff L dependence is absorbed in the renormalizat
group flow of the renormalized two-body couplings. Th
particle-particle scattering amplitude in the vacuum is giv
by g2D. Thus, by setting 4pD/Mg212L/p51/a, we ob-
tain the leading order scattering amplitude in the effect
range expansion~after analytically continuing the amplitud
to real values of the energy by settingk0→k022Mm
1 i e). Notice the fine tuning between the linearly diverge
term 2L/p ~kinetic energy! and the interaction term
4pD/Mg(L)2 ~potential energy! needed to produce a sma
value of 1/a. We can understand now the reason for t
resummation of the graphs at the bottom of Fig. 2. For dil
systems with typical momenta of orderp;AMT;1/a, the
square root in the denominator of Eq.~7!, generated by the
loops in the dimer propagator, isnot negligible compared
to 1/a.

Plugging the expression in Eq.~7! in the diagram in Fig.
2, we have
n2
(2)5MT(

k0

E d3k

~2p!3

1

2
1

a
1AkW2

4
22Mm2 iMk0

1

AkW2

4
22Mm2 iMk0

5MTE dh

2p i
E d3k

~2p!3

1

ebh21

1

2
1

a
1AkW2

4
22Mm2Mh

1

AkW2

4
22Mm2Mh

. ~8!
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It is easier to consider the dimer contribution to the therm
dynamic potentialV and then computen2

(2)52]V/]m. The
integration overh, on a contour encircling the imaginar
axis, can be deformed into an integral over the discontinu
on the branch cut~which describes the dimer break up! plus
the contribution of the dimer pole. The final result is

n2
(2)52b2

z2

l̄3
5

z2

l̄3
ebB223/2F11erfS 1

aAMT
D G , ~9!

whereB251/(Ma2) is the location of the pole in the dime
propagator. This pole corresponds to a bound state~if a is
positive! or a ‘‘virtual’’ bound state, that is, a pole in th
unphysical sheet~if a is negative!. Equation~9! is a particu-
lar case of the classic formula relatingb2

(2) to the two-
particle scattering phase shift19
-

y

b2
(2)521/2S ebB21

1

pE0

`

dk
dd~k!

dk
e2bk2/M D , ~10!

in the case, where the phase shifts are given by the lea
order effective range expansionk cotd(k)521/a. A few
points are worth mentioning here. First,b2 is a continuous
function of a at 1/a50. The change in the potential neede
to take a from a large and positive value to a large a
negative value is small, and that change has only a sm
effect in the thermodynamics, even though there is a qu
tative difference in the spectrum~from a bound state to a
virtual bound state!. Second,b2 is positive and, forB2.T, it
is exponentially large. In the casea.0, this is easily under-
stood as a consequence of the existence of a bound s
when T!B2, most particles form tight two-body boun
states thereby increasing the density for a fixed tempera
and chemical potential. In fact, if thez2 terms dominate, the
3-3
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ratio of the two equations in Eq.~1! give the equation of state
of a free gas with densityn/2.

The third virial coefficientb3 includes three pieces. Th
first, b3

(1) , is determined by thez3 piece in Eq.~4! and equals
b3

(1)5325/2. The second one,b3
(2) , comes from a subleadin

piece of the diagram of Fig. 2 and is given by

n3
(2)53 b3

(2)
z3

l̄3

52 T(
k0

E d3k

~2p!3 H @D (0)~k!#2S (1)~k!
d

idk0

S (0)~k!

1D (0)~k!
d

idk0

S (1)~k!J
52 T(

k0

E d3k

~2p!3

d

dk0
@D (0)~k!S (1)~k!#

5
ibz3

p4
E

0

`

dk2E
0

`

dpE dze2bp2/2M

3arctghS p k

k21
p2

2
22Mm2 iMp0

D
3

1

2
1

a
1Ak

4
2Mz

, ~11!

where the integral overz runs on a vertical line just to the
left of the pole at2B2. The integral in Eq.~11! is computed
numerically. The third piece,b3

(3) , comes from actual three
body correlations in the system, and brings in new phys
besides that contained in two-body scattering. The diagr
contributing to it are shown in Fig. 3. Just as the two-bo
scattering amplitude cannot be computed in perturba
theory, the three-body amplitude that enters in Fig. 3 a
involves a resummation of an infinite number of diagram
This is because each additional loop involves a factor ofpa,
wherep is the typical momentum flowing through the loo
In the case considered here,Q;1/l̄;1/a and the ‘‘suppres-
sion’’ factor is of order 1. The diagrams in Fig. 3 gives

n3
(3)5T2 (

k0 ,p0

E d3k

~2p!3

d3p

~2p!3 S 1

ip01ep
D 2

D (0)~p1k!

3T ~2p,p1k;2p,p1k!

5T2(
k0

E d3k

~2p!3

d3p

~2p!3

dh

2p i

1

ebh21
S 1

h1ep
D 2

3D (0)~p1k!T ~2p,p1k;2p,p1k!, ~12!
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where in the second linep5(2 ih,pW ) and T(2p,p1k;
2p,p1k) is the forward particle-dimer scattering amplitud
determined by the diagrams at the bottom of Fig. 3. T
integral over h is dominated by the particle pole ath
52ep , with the contribution coming from the dimer pol
and cut suppressed by two powers ofz. We then have

n3
(3)52

2pz3

g2
E d3k

~2p!3

d3P

~2p!3
E dz

2p i
e2bz

3T S 2P1
k

3
,P1

2k

3
;2P1

k

3
,P1

2k

3
DU

k05 i3m2 i z

3
1

2
1

a
1A3PW 2

4
1

kW2

6
2Mz

1

A3PW 2

4
1

kW2

6
2Mz

,

~13!

where we use the center-of-mass variableP5( i ep ,pW

1kW /3). The integration over the new variablez53m1h is
on a vertical line just to the left of the left-most singulari
that can be a trimer pole atk2/6M2B3 or a dimer pole at
k2/6M13P2/4M2B2. The cuts in the three-body amplitud
describing dimer-particle scattering, dimer breakup, etc.,
on the real axis, to the right of two- and three-particle pol

Unlike the dimer propagator, the diagrams adding up
the three-body amplitudeT (2p,p1k;2p,p1k) do not
form a simple geometrical series and cannot be summed
analytically. However, their sum is determined by the in
gral equation depicted at the bottom of Fig. 3. This integ
equation~Faddeev equation! is particularly simple for the
separable potential used here~Some simplifications in the
computation ofb3 in the case of separable potentials we
noted in Ref. 20! and was derived earlier with a variety o
techniques.21–23 It is more easily written in terms of the
s-wave amplitudeT0(z,P,P8) defined by

FIG. 3. Graph determining the density at leading order inz3 and
the integral equation for the three-body amplitude.
3-4
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T0~z,P,P8!

4M
5E dP̂

4p

dP̂8

4p

T S 2P1
k

3
,P1

2k

3
;2P1

k

3
,P1

2k

3
D uk05 i3m2 i z

W 2 W2
. ~14!
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PW 22
3

~z1B2! 2
1

a
1A3P8

4
1

k

6
2Mz
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Higher partial waves, describing more peripheral partic
dimer collisions, give suppressed contributions.T0(z,P,P8)
satisfies

T0~z,P,P8!5K~z,P,P8!

1
2

pE0

L

dqq2
T0~z,P,q!

q22
4M

3
~z1B2!

K~z,q,P8!,

~15!

with the kernel

K~z,P,P8!5
4

3 S 1

a
1A3P2

4
2Mz D

3F 1

PP8
lnS P21PP81P822Mz

P22PP81P822Mz
D 2

g3~L!

Mg2 G .

~16!

Equation ~15! has a number of surprising properties.24–28

This properties are more naturally described in terms
renormalization theory. It was shown in Refs. 29, and 30 t
T0(z,P,P8) is kept cutoff independent for small values
P,P8!L if, and only if, the three-body force varies with th
cutoff L as

2
g3~L!L2

2Mg2
5

sin@s0ln~L/L* !2arctans0#

sin@s0ln~L/L* !1arctans0#
1OS 1

aL D ,

~17!

where L* is a new parameter that cannot be measu
through two-particle experiments ands0'1.006 is the solu-
tion of a certain trigonometric equation. The failure to i
clude the three-body force term leads to a strong cutoff
pendence on the results and thus, to the impossibility
arriving at model independent results. The three-body s
tering amplitude depends, even at the leading order in
expansion in powers ofl̄/R, on the value of the three-bod
force, here parameterized byL* . The parameterL* encodes
all short distance physics, besides the value ofa, necessary to
describe three-body systems. Likea, it varies from one sys-
tem to another and only the measurement of some three-b
observable allows us to fix it. The appearance of an e
parameter not determined by two-body scattering preclu
the possibility of predictions in the three-body sector ba
only on the value ofa.

Using Eqs.~13! and~14! and performing a trivial integra
over k and the angular part ofPW , we arrive at
17451
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n3
(3)53b3

(3)
z3

l̄3

5 i
9A3

4p2
M

z3

l̄3
E

0

`

dPP2E dzebz
T0~z,P,P!

S 3P2

4
2Mz2B2D 2

3S 11
1

a

1

A3P2

4
2Mz

D . ~18!

The amplitudeT0(z,P,P) and the quadratures in Eq.~18!
have to be performed numerically.31

The coefficientb35b3
(1)1b3

(2)1b3
(3) is a function of the

temperature and of the parameters describing the mi
scopic dynamics~the scattering lengtha and the three-body
parameterL* ). In Fig. 4, we show the value ofb3 as a
function of 1/a for a few values of these parameters. As
example, we pickM5M 4He, T51027eV'1.16 mK, and
2L2g3(L)/(2Mg2)[H(L)523.235 ~the bottom solid
curve!, 20.22 ~the middle solid curve!, and 0.05~the top
solid curve!. In all of them, we useL5200 eV, but, as men-
tioned above, the results are cutoff independent up to sm
corrections of order 1/(La). The first of these values wa
chosen following Ref. 32 and it gives rise to a trimer with t
binding energy of the shallower4He trimer ~as predicted
through potential model calculations!33–35whena is set tothe
value inferred from the dimer measurementa510218

18 Å.36

For the value of theL used the deeper trimer state is abse
Whena andL* are such that there is a three-body bou

stateB3*B2, we find empirically thatb3 scales roughly as
ebB3, see Fig. 4. This is not surprising and is a direct ana
of the physics described by Eq.~9! in the case of the coeffi-
cient b2: when bB3@1 most particles form three-bod
bound states, which increases the density for a given t
perature and chemical potential as compared to the free
This doesnot mean, however, that the integral in Eq.~18! is
dominated by the trimer pole: the contribution from the tw
and three-particle cuts is never negligible. For values ofaL*
for which B3 approachesB2 the dimer-particle cross-sectio
diverges. Still, the three-particle correlations described byb3
are smooth at those points. For systems with a trimer dee
than the dimer,b3 can be much larger that bothb1 andb2,
and dominate the virial expansion. This is not a rare sit
tion, due to a well known but strange feature of the thre
resonating particle system: as the potential is changed
3-5
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make the dimershallower, the trimer becomesdeeper.26 This
is what happens in theH50.05 case shown in the top soli
curve in Fig. 4.

In atomic traps close to a Feshbach resonance it isa, that
is, a tunable parameter. The influence of the magnetic fi
on the value of the three-body force parameterL* is small,
since that describes short-distance physics of an energy
much higher than the magnetic field, and can be disrega
in a first approximation. Thus, we can regard the horizon
axis in Fig. 4 as denoting the magnetic field using the Fe
bach resonance formula

a~B!5a~B50!S 11
dB

B2B0
D . ~19!

Let us summarize the approximation performed here tha
lowed such a simple evaluation of such a complex thr
body dynamics. First, we approximate the two-body pot
tial by a short range,d-function-like interaction. Corrections
to this approximation are proportional to the effective ran
r 0 /l̄, wherer 0;R is the effective range, much smaller tha
a by assumption. Effective range corrections can be ea
included, even to very high orders, without spoiling the si
plicity of the method, as it has been done in few-nucle
physics.23,37The second approximation was the noninclus
of higher partial waves. In the two-body sector,p waves and
higher are suppressed by at lest two powers ofR/l̄, and are
small. In the three-body sector the suppression of
particle-dimer l-wave interactions are not suppressed
powers ofR/l̄, but by 1/(l 11). All the higher partial waves
correspond to a repulsive kernel in Eq.~15!, which do not
support bound states and cannot produce an enhanceme
the form ebB3. In practice, the phase shifts are rather sm
but, if needed, they can also be easily included by solving
analog of Eq.~15! corresponding to the higher partial wav
and adding it to Eq.~13!.

Our results are valid only in true thermal equilibrium
after two- and three-particle bound states had the time
form, and assuming that they stay in the system~ do not
escape from the trap, if that is the case!. For systems like the
alkali atoms studied in magnetic/optical traps, that have d
bound states with typical interparticle distance of order;R
that lie outside the validity range of our effective theory, th
means that our results are relevant only for the metast
state before the collapse of the system, but after the two-
three-body bound states form. The formation of al-body
bound state requires the approach ofl 11 particles in order
to conserve energy and momentum, and their rates are
sequently suppressed bynl 11. These rates are not known
finite temperature but have been studied at zero tempera
in Refs. 38–40~recombination into shallow states! and41 ~re-
combination into deep states!. In cases, wherea.0 the re-
combination rate into deep~two-body! bound states is esti
mated to be much smaller than the rate into shallow bo
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states suggesting that there is a time window in which
results apply. In thea,0 case, there is no two-body boun
state and it is not known how the rates for the formation
deep and shallow three-body bound states compare.

Finally, let us consider the changes introduced in case
fermionic particles. In the nondegenerate case conside
here, the effect of the quantum statistics in the thermodyn
ics is minor, and amounts to a change in sign in some of
coefficientsb1,2

(1,3, . . . ). The elementary collisions, howeve
may differ a great deal due to the exclusion principle. If w
have only one fermionic species in the system,s-wave scat-
tering is impossible and all virial coefficientsb2 ,b3 ,••• are
suppressed. In the case of two fermionic species~as a dilute
neutron gas!, two-body collisions are possible and the sta
dard result in Eq.~9! is valid. The physics of the three-bod
correlations is, however, very different. No three-body for
term without derivatives exist, and the three-body force c
tribution is suppressed.42 In this channel the three-body re
combination from atom-dimer scattering was also calcula
in Ref. 43. b3 can be computed in terms ofa alone, but
cannot ever be large and dominate the expansion, as the
nel appearing in Eq.~15! would be repulsive and would no
support a bound state. The case with three or more fermio
species with all the scattering lengths large but not neces
ily equal, which includes the dilute nuclear matter case~pro-
tons and neutrons with spin either up or down!, is very simi-
lar to the bosonic case. Three particles can occupy the s
point in space without violating the exclusion principle an
as a consequence, the two coupled equations that subs
Eq. ~15! have very similar properties to the boson
equation.44

This work was supported by the Director, Office of E
ergy Research, Office of High Energy and Nuclear Phys
and by the Office of Basic Energy Sciences, Division
Nuclear Sciences, of the U.S. Department of Energy un
Contract No. DE-AC03-76SF00098.

FIG. 4. b3 as a function of the inverse scattering length 1/a, in
units of eV, for three values ofH(L5200 eV) ~solid lines, H
523.23, 20.22, 0.05, from bottom to top!. The dashed line is the
estimateebB3.
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